查看原文
其他

北大邓宏魁课题组建立更加快速高效的人体细胞化学重编程体系

多潜能干细胞具有无限自我更新和分化成生物体所有功能细胞类型的能力,这些神奇的特质使其在细胞治疗、药物筛选和疾病模型等领域具有广泛的应用价值,是再生医学领域最为关键的“种子细胞”。如何在体外诱导获得多潜能干细胞一直是生命科学领域的关键科学问题。

生命的本质是化学过程,通过化学小分子调控细胞命运,理论上是最有效的方式。化学重编程与传统重编程技术存在本质区别:传统转基因重编程技术如诱导多潜能干细胞技术(iPS技术),是通过细胞内源转录因子的过表达,驱动细胞命运发生直接转变,其诱导过程难以控制;而化学重编程是利用外源的化学小分子模拟外界信号刺激,驱动细胞命运以分阶段的方式发生转变。因此,该方法可控性强,有望实现精准调控细胞命运、逆转细胞身份和功能状态,使逆向发育成为可能。

2013年,北京大学邓宏魁研究组在Science杂志发表了一项原创性的成果,即不依赖卵母细胞和转录因子等细胞内源物质,仅使用外源性化学小分子就可以逆转细胞命运,将小鼠体细胞重编程为多潜能干细胞(chemically induced pluripotent stem cells,CiPS细胞),开辟了一条全新的体细胞重编程的路径。2022年,邓宏魁研究组取得了新的突破,成功地实现了利用化学小分子将人成体细胞诱导为多潜能干细胞(人CiPS细胞)(详见BioArt报道:专家点评Nature突破 | 邓宏魁团队利用化学小分子诱导人成体细胞转变为多潜能干细胞)(Nature,2022)

2023年3月20日,邓宏魁研究组在Cell Stem Cell发表了题为 Highly efficient and rapid generation of human pluripotent stem cells by chemical reprogramming 的研究论文。该研究建立了新的化学重编程体系,更加快速和高效地将人成体细胞诱导为多潜能干细胞。


在这项工作中,邓宏魁研究组建立了一套更加快速、高效和稳定的人体细胞化学重编程方法。研究人员发现了新的化学小分子组合,大幅加快了重编程进程,诱导周期由原来的50天缩短到30天以内,最短16天即可完成诱导。与此同时,诱导效率大幅提升,最高可达31%。新体系在不同遗传背景、不同年龄的17名个体来源的体细胞上进行了测试,均可实现高效诱导,加速了人CiPS细胞在细胞治疗、药物筛选和疾病模型等方面广泛应用的步伐 。

根据邓宏魁研究组先前报道,原有体系在诱导人CiPS细胞的过程中先后经历了类上皮细胞阶段、可塑性中间态细胞阶段、类胚外内胚层细胞(XEN-like)阶段,最终建立了多潜能干细胞(专家点评Nature突破 | 邓宏魁团队利用化学小分子诱导人成体细胞转变为多潜能干细胞(Nature,2022)。本研究发现了新体系更加快速和高效的分子机制:可塑性中间态细胞在增殖能力和氧化磷酸化代谢活性方面显著增强,不再经历XEN-like阶段,多能性基因激活更加快速,分子路径更加直接。特别重要的是,传统iPS重编程依赖逐步增强的糖酵解代谢过程,而化学重编程最为关键的阶段——可塑性中间状态的产生则依赖氧化磷酸化,并不依赖糖酵解代谢。这一发现,揭示了特定的能量代谢途径对不同细胞命运转变过程的重要性,为从能量代谢的角度理解细胞命运调控的机制提供了新的视角。

建立更加快速和高效的人体细胞化学重编程体系

本研究建立的新诱导方案不仅快速、高效和稳定,更重要的是,该方案成分明确(chemically defined)不依赖血清(xeno-free)不依赖于饲养层细胞(feeder-free),这些属性更好地满足了临床应用的需求,为建立符合临床应用标准的人CiPS细胞系奠定了基础,使其向临床应用迈进了关键一步。与转基因过表达转录因子相比,化学小分子具有不整合基因组,作用可逆,操作简单等优势,因此CiPS技术更加安全、简单且易于标准化,具有广阔的临床应用前景。目前,邓宏魁研究组已利用人CiPS细胞高效制备了胰岛细胞,并在大动物模型上验证了其治疗糖尿病的安全性和有效性,凸显了人CiPS细胞作为“种子细胞”治疗重大疾病的临床应用价值(Nat Metab | 邓宏魁/彭小忠合作建立全新胰岛移植策略,解决干细胞治疗糖尿病的关键难题Nat Med | 邓宏魁/彭小忠/沈中阳合作揭示人多能干细胞分化的胰岛细胞可缓解非人灵长类的糖尿病(Nature Medicine 2022;Nature Metabolism, 2023)

北京大学邓宏魁教授和王金琳博士是这一研究成果的共同通讯作者。北京大学刘杨世嘉,王冠,王杨璐,何焕景,吕钰麟为该研究成果的主要作者。北京大学李程教授为该研究的生物信息分析提供了指导。

原文链接:

https://doi.org/10.1016/j.stem.2023.02.008

来源:BioArt

E.N.D

更多内容,点击下方视频号


往期文章推荐:

首位接受CRISPR基因编辑的患者,三年后怎么样了?

细胞基因治疗行业每周要闻概览(~2023.3.20)

肿瘤免疫治疗简史!

医药行业深度研究:小核酸药物,历经低谷,迎来快速发展

干细胞行业观察:法律监管和市场实践处于不同步状态

生命科学领域最具影响力的领导者榜单出炉,46位杰出人士当选

ChatGPT创始人投资丁胜教授抗衰老公司,聚焦细胞重编程

资本从互联网向生物技术迁移,未来10年,细胞、基因和生物工程成为核心驱动力!

2万字收藏版:上海张江 V.S. 苏州工业园区的生命科学产业

收藏版 | mRNA药物全面解读

细胞基因治疗行业每周要闻概览(~2023.3.13)

中美欧细胞与基因治疗产业的投资监管制度比较及对中国的建议

质粒和病毒载体生产工艺流程解析

两家细胞治疗公司合并,股价上涨超40%

细胞基因治疗CDMO行业深度研究报告:细胞基因疗法千帆竞发,研发生产外包踏浪前行

深圳细胞和基因产业新政3月1日正式施行

国内AAV基因治疗进入爆发前夕,17款IND获批,1款进入3期临床试验

遗传性耳聋基因治疗的进展、前景及挑战

2023“最具创新力”10大生物技术公司榜单出炉

去年超50家合成生物企业完成融资,百亿级新赛道何以被催生?

人民日报发文:细胞治疗产业发展潜力大

北京经济技术开发区发布新政:促进细胞与基因治疗等产业高质量发展

国内合成生物学融资Top20

浅议《中国禁止出口限制出口技术目录》修订征求意见稿

40家干细胞治疗企业和技术管线

上市核酸药物及其脂质纳米递送载体研究进展

简述AAV生产工艺下游纯化的挑战

中国合成生物学产业发展报告

CRISPR基因编辑技术攻克SMA

细胞基因治疗病毒载体研究报告

2023年基因治疗行业面临的5大挑战

七家值得关注的RNA Biotech公司

世界首个CRISPR基因编辑疗法上市申请获受理,来自诺奖团队

长寿科技掀起投资风口,基因疗法比小分子具有更大潜力

GEN:2023年值得关注的七大生物制药趋势

基因疗法已走出“黑暗时期”,即将步入高速发展期

以AAV为载体的基因治疗药物的生物分析策略

加速病毒载体疫苗开发的新兴策略

应用于mRNA疫苗及药物中的分析技术

RNA疗法前景广阔,核酸药物有望开启第三代药物浪潮

质粒和病毒载体生产工艺流程解析

汇总全球已上市的45款基因治疗药物

基因治疗临床试验最新概述

NK细胞在新冠病毒防治中的具有重要价值

先导编辑器(Prime Editing)研究进展

基因编辑进入迷你时代




声明:本文旨在知识共享,所有内容仅供参考,不构成任何建议。

您可能也对以下帖子感兴趣

文章有问题?点此查看未经处理的缓存